
Package: LearnSL (via r-universe)
September 14, 2024

Type Package

Title Learn Supervised Classification Methods Through Examples and
Code

Version 1.0.0

Description Supervised classification methods, which (if asked) can
provide step-by-step explanations of the algorithms used, as
described in PK Josephine et. al., (2021)
<doi:10.59176/kjcs.v1i1.1259>; and datasets to test them on,
which highlight the strengths and weaknesses of each technique.

URL https://github.com/ComiSeng/LearnSL

BugReports https://github.com/ComiSeng/LearnSL/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Depends R (>= 4.3.0)

Imports cli (>= 3.6.1)

Repository https://comiseng.r-universe.dev

RemoteUrl https://github.com/comiseng/learnsl

RemoteRef HEAD

RemoteSha afb14b3ee9d6d8520edd489a192b957cdaf4dd0e

Contents
act_method . 2
db1rl . 3
db2 . 4
db3 . 4
db_flowers . 5

1

https://doi.org/10.59176/kjcs.v1i1.1259
https://github.com/ComiSeng/LearnSL
https://github.com/ComiSeng/LearnSL/issues

2 act_method

db_per_and . 5
db_per_or . 6
db_per_xor . 6
db_tree_struct . 7
decision_tree . 7
knn . 9
multivariate_linear_regression . 10
perceptron . 11
polynomial_regression . 12
print.tree_struct . 13

Index 14

act_method Activation Function

Description

Upon a received input, calculates the output based on the selected activation function

Usage

act_method(method, x)

Arguments

method Activation function to be used. It must be one of "step", "sine", "tangent",
"linear", "relu", "gelu" or "swish".

x Input value to be used in the activation function.

Details

Formulae used:

step

f(x) =

{
0 if x < threshold
1 if x ≥ threshold

sine
f(x) = sinh(x)

tangent
f(x) = tanh(x)

linear
x

relu

f(x) =

{
x if x > 0

0 if x ≤ 0

db1rl 3

gelu

f(x) =
1

2
· x ·

(
1 + tanh

(√
2

π
· (x+ 0.044715 · x3)

))

swish
f(x) =

x

1 + e−x

Value

List with the weights of the inputs.

Author(s)

Víctor Amador Padilla, <victor.amador@edu.uah.es>

Examples

example code
act_method("step", 0.3)
act_method("gelu", 0.7)

db1rl Test Database 1

Description

Test Database 1

Usage

db1rl

Format

db1rl:
A data frame with 4 independent variables (first 4 columns, representing different line types). The
last column is the independent variable.

4 db3

db2 Test Database 6

Description

Test Database 6

Usage

db2

Format

db2:
A data frame with 3 independent variables (first 3 columns) and one independent variable (last
column). It has information about vehicles.

db3 Test Database 7

Description

Test Database 7

Usage

db3

Format

db3:
A data frame with 3 independent variables (first 3 columns) and one independent variable (last
column). It has information about vehicles. Similar to db2 but a little bit more complex.

db_flowers 5

db_flowers Test Database 5

Description

Test Database 5

Usage

db_flowers

Format

db_flowers:
A data frame representing features of flowers. It has 4 independent variables (first 4 columns) and
one independent variable (last column).

db_per_and Test Database 2

Description

Test Database 2

Usage

db_per_and

Format

db_per_and:
A data frame with 3 independent variables (first 3 columns) and one independent variable (last
column). It represents a 3 input "AND" logic gate.

6 db_per_xor

db_per_or Test Database 3

Description

Test Database 3

Usage

db_per_or

Format

db_per_or:
A data frame with 3 independent variables (first 3 columns) and one independent variable (last
column). It represents a 3 input "OR" logic gate.

db_per_xor Test Database 4

Description

Test Database 4

Usage

db_per_xor

Format

db_per_xor:
A data frame with 3 independent variables (first 3 columns) and one independent variable (last
column). It represents a 3 input "XOR" logic gate.

db_tree_struct 7

db_tree_struct Test Database 8

Description

Test Database 8

Usage

db_tree_struct

Format

db_tree_struct:
Decision tree structure. output of the decision_tree() function "decision_tree(db2, "VehicleType",
4, "gini")"

decision_tree Decision Tree

Description

This function creates a decision tree based of an example dataset, calculating the best classifier
possible in each step. Only creates perfect divisions, this means, if the rule doesn’t create a classified
group, it is not considered. It is specifically designed for categorical values. Continues values are
not recommended as they will be treated as categorical ones.

Usage

decision_tree(
data,
classy,
m,
method = "entropy",
details = FALSE,
waiting = TRUE

)

Arguments

data A data frame with already classified observations. Each column represents a pa-
rameter of the value. Each row is a different observation. The column names in
the parameter "data" must not contain the sequence of characters " or ". As this
is supposed to be a binary decision rules generator and not a binary decision tree
generator, no tree structures are used, except for the information gain formulas.

8 decision_tree

classy Name of the column we want the data to be classified by. the set of rules obtained
will be calculated according to this.

m Maximum numbers of child nodes each node can have.

method The definition of Gain. It must be one of "Entropy", "Gini"or "Error".

details Boolean value. If it is set to "TRUE" multiple clarifications and explanations are
printed along the code

waiting If TRUE while details = TRUE. The code will stop in each "block" of code
and wait for the user to press "enter" to continue.

Details

If data is not perfectly classifiable, the code will not finish.

Available information gain methods are:

Entropy The formula to calculate the entropy works as follows:pi = −
∑

fipi · log 2pi
Gini The formula to calculate gini works as follows:pi = 1−

∑
fip

2
i

Error The formula to calculate error works as follows:pi = 1−max (fipi)

Once the impurity is calculated, the information gain is calculated as follows:

IG = Ifather −
∑ count(sonvalues)

count(fathervalues)
· Ison

Value

Structure of the tree. List with a list per tree level. Each of these contains a list per level node, each
of these contains a list with the node’s filtered data, the node’s id, the father’s node id, the height
that node is at, the variable it filters by, the value that variable is filtered by and the information gain
of the division

Author(s)

Víctor Amador Padilla, <victor.amador@edu.uah.es>

Examples

example code
decision_tree(db3, "VehicleType", 5, "entropy", details = TRUE, waiting = FALSE)
decision_tree(db2, "VehicleType", 4, "gini")

knn 9

knn K-Nearest Neighbors

Description

This function applies knn algorithm to classify data.

Usage

knn(
data,
ClassLabel,
p1,
d_method = "euclidean",
k,
p = 3,
details = FALSE,
waiting = TRUE

)

Arguments

data Data frame with already classified observations. Each column represents a pa-
rameter of the values. The last column contains the output, this means, the ex-
pected output when the other column values are inputs. Each row is a different
observation.

ClassLabel String containing the name of the column of the classes we want to classify

p1 Vector containing the parameters of the new value that we want to classify.

d_method String with the name of the distance method that will be used. It must be
one of "Euclidean", "Manhattan", "Cosine", "Chebyshev", "Minkowski",
"Canberra", "Octile", "Hamming", "Binary"or "Jaccard". Where both "Hamming"
and "Binary" use the same method, as it is known by both names.

k Number of closest values that will be considered in order to classify the new
value ("p1").

p Exponent used in the Minkowski distance. 3 by default, otherwise if specified.

details Boolean value. If it is set to "TRUE" multiple clarifications and explanations are
printed along the code

waiting If TRUE while details = TRUE. The code will stop in each "block" of code
and wait for the user to press "enter" to continue.

Value

Value of the new classified example.

10 multivariate_linear_regression

Author(s)

Víctor Amador Padilla, <victor.amador@edu.uah.es>

Examples

example code
knn(db_flowers,"ClassLabel", c(4.7, 1.2, 5.3, 2.1), "chebyshev", 4)
knn(db_flowers,"ClassLabel", c(4.7, 1.5, 5.3, 2.1), "chebyshev", 5)
knn(db_flowers,"ClassLabel", c(6.7, 1.5, 5.3, 2.1), "Euclidean", 2, details = TRUE, waiting = FALSE)
knn(db_per_or,"y", c(1,1,1), "Hamming", 3, details = TRUE, waiting = FALSE)

multivariate_linear_regression

Multivariate Linear Regression

Description

Calculates and plots the linear regression of a given set of values. Being all of them independent
values but one, which is the dependent value. It provides information about the process and inter-
mediate values used to calculate the line equation.

Usage

multivariate_linear_regression(data, details = FALSE, waiting = TRUE)

Arguments

data x*y data frame with already classified observations. Each column represents a
parameter of the values (independent variable). The last column represents the
classification value (dependent variable). Each row is a different observation.

details Boolean value. If it is set to "TRUE" multiple clarifications and explanations are
printed along the code

waiting If TRUE while details = TRUE. The code will stop in each "block" of code
and wait for the user to press "enter" to continue.

Value

List containing a list for each independent variable, each one contains, the variable name, the inter-
cept and the slope.

Author(s)

Víctor Amador Padilla, <victor.amador@edu.uah.es>

perceptron 11

Examples

example code
multivariate_linear_regression(db1rl)

perceptron Perceptron

Description

Binary classification algorithm that learns to separate two classes of data points by finding an opti-
mal decision boundary (hyper plane) in the feature space.

Usage

perceptron(
training_data,
to_clasify,
activation_method,
max_iter,
learning_rate,
details = FALSE,
waiting = TRUE

)

Arguments

training_data Data frame with already classified observations. Each column represents a pa-
rameter of the values. The last column contains the output, this means, the ex-
pected output when the other column values are inputs. Each row is a different
observation. It works as training data.

to_clasify Vector containing the parameters of the new value that we want to classify.

activation_method

Activation function to be used. It must be one of "step", "sine", "tangent",
"linear", "relu", "gelu" or "swish".

max_iter Maximum epoch during the training phase.

learning_rate Value at which the perceptron will learn from previous epochs mistakes.

details Boolean value. If it is set to "TRUE" multiple clarifications and explanations are
printed along the code

waiting If TRUE while details = TRUE. The code will stop in each "block" of code
and wait for the user to press "enter" to continue.

12 polynomial_regression

Details

Functioning:

Step 1 Generate a random weight for each independent variable.
Step 2 Check if the weights classify correctly. If they do, go to step 4
Step 3 Adjust weights based on the error between the expected output and the real output. If

max_iter is reached go to step 4. If not, go to step 2.
Step 4 Return the weights and use them to classify the new value

Value

List with the weights of the inputs.

Author(s)

Víctor Amador Padilla, <victor.amador@edu.uah.es>

Examples

example code
perceptron(db_per_or, c(1, 1, 1), "gelu", 1000, 0.1)
perceptron(db_per_and, c(0,0,1), "swish", 1000, 0.1, TRUE, FALSE)

polynomial_regression Multivariate Polynomial Regression

Description

Calculates and plots the polynomial regression of a given set of values. Being all of them inde-
pendent values but one, which is the dependent value. It provides (if asked) information about the
process and intermediate values used to calculate the line equation. The approximation depends
entirely in the degree of the equations.

Usage

polynomial_regression(data, degree, details = FALSE, waiting = TRUE)

Arguments

data x*y data frame with already classified observations. Each column represents a
parameter of the values (independent variable). The last column represents the
classification value (dependent variable). Each row is a different observation.

degree Degree of the equations approximation.
details Boolean value. If it is set to "TRUE" multiple clarifications and explanations are

printed along the code
waiting If TRUE while details = TRUE. The code will stop in each "block" of code

and wait for the user to press "enter" to continue.

print.tree_struct 13

Value

List containing a list for each independent variable, each one contains the equation coefficients.

Author(s)

Víctor Amador Padilla, <victor.amador@edu.uah.es>

Examples

example code
polynomial_regression(db1rl,4, TRUE, FALSE)
polynomial_regression(db1rl,6)

print.tree_struct Print Tree Structure

Description

This function prints the structure of a tree, generated by the decision_tree function.

Usage

S3 method for class 'tree_struct'
print(x, ...)

Arguments

x The tree structure.

... Extra useless parameters.

Details

It must receive a tree_struct data type.

Value

nothing.

Author(s)

Víctor Amador Padilla, <victor.amador@edu.uah.es>

Examples

example code
print(db_tree_struct)

Index

∗ datasets
db1rl, 3
db2, 4
db3, 4
db_flowers, 5
db_per_and, 5
db_per_or, 6
db_per_xor, 6
db_tree_struct, 7

act_method, 2

db1rl, 3
db2, 4
db3, 4
db_flowers, 5
db_per_and, 5
db_per_or, 6
db_per_xor, 6
db_tree_struct, 7
decision_tree, 7

knn, 9

multivariate_linear_regression, 10

perceptron, 11
polynomial_regression, 12
print.tree_struct, 13

14

	act_method
	db1rl
	db2
	db3
	db_flowers
	db_per_and
	db_per_or
	db_per_xor
	db_tree_struct
	decision_tree
	knn
	multivariate_linear_regression
	perceptron
	polynomial_regression
	print.tree_struct
	Index

